SQUARE INTEGRABILITY OF REPRESENTATIONS ON p-ADIC SYMMETRIC SPACES

نویسندگان

  • SHIN-ICHI KATO
  • KEIJI TAKANO
چکیده

A symmetric space analogue of Casselman’s criterion for square integrability of representations of a p-adic group is established. It is described in terms of exponents of Jacquet modules along parabolic subgroups associated to the symmetric space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SQUARE INTEGRABLE REPRESENTATIONS OF CLASSICAL p-ADIC GROUPS CORRESPONDING TO SEGMENTS

Let Sn be either the group Sp(n) or SO(2n+1) over a p-adic field F . Then Levi factors of maximal parabolic subgroups are (isomorphic to) direct products of GL(k) and Sn−k , with 1 ≤ k ≤ n. The square integrable representations which we define and study in this paper (and prove their square integrability), are subquotients of reducible representations Indn P (δ⊗σ), where δ is an essentially squ...

متن کامل

SUBREPRESENTATION THEOREM FOR p-ADIC SYMMETRIC SPACES

The notion of relative cuspidality for distinguished representations attached to p-adic symmetric spaces is introduced. A characterization of relative cuspidality in terms of Jacquet modules is given and a generalization of Jacquet’s subrepresentation theorem to the relative case (symmetric space case) is established.

متن کامل

Dimensions of Some Locally Analytic Representations

Let G be the group of points of a split reductive group over a finite extension of Qp. In this paper, we compute the dimensions of certain classes of locally analytic G-representations. This includes principal series representations and certain representations coming from homogeneous line bundles on p-adic symmetric spaces. As an application, we compute the dimensions of the unitary GL2pQpq-rep...

متن کامل

Globally analytic $p$-adic representations of the pro--$p$--Iwahori subgroup of $GL(2)$ and base change‎, ‎I‎ : ‎Iwasawa algebras and a base change map

This paper extends to the pro-$p$ Iwahori subgroup of $GL(2)$ over an unramified finite extension of $mathbb{Q}_p$ the presentation of the Iwasawa algebra obtained earlier by the author for the congruence subgroup of level one of $SL(2‎, ‎mathbb{Z}_p)$‎. ‎It then describes a natural base change map between the Iwasawa algebras or more correctly‎, ‎as it turns out‎, ‎between the global distribut...

متن کامل

LOGARITHMIC DIFFERENTIAL FORMS ON p-ADIC SYMMETRIC SPACES

We give an explicit description in terms of logarithmic differential forms of the isomorphism of P. Schneider and U. Stuhler relating de Rham cohomology of p-adic symmetric spaces to boundary distributions. As an application we prove a Hodgetype decomposition for the de Rham cohomology of varieties over p-adic fields which admit a uniformization by a p-adic symmetric space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009